MAC212A8, MAC212A10

Triacs

Silicon Bidirectional Thyristors

Designed primarily for full-wave ac control applications, such as light dimmers, motor controls, heating controls and power supplies; or wherever full-wave silicon gate controlled solid-state devices are needed. Triac type thyristors switch from a blocking to a conducting state for either polarity of applied anode voltage with positive or negative gate triggering.

Features

- Blocking Voltage to 800 Volts
- All Diffused and Glass Passivated Junctions for Greater Parameter Uniformity and Stability
- Small, Rugged, Thermowatt Construction for Low Thermal

Resistance, High Heat Dissipation and Durability

- Gate Triggering Guaranteed in Four Modes
- Pb -Free Packages are Available

MAXIMUM RATINGS $\left(T_{J}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Rating	Symbol	Value	Unit
Peak Repetitive Off-State Voltage (Note 1) ($\mathrm{T}_{\mathrm{J}}=-40$ to $+125^{\circ} \mathrm{C}$, Sine Wave 50 to 60 Hz , Gate Open) MAC212A8 MAC212A10	VDRM, $V_{\text {RRM }}$	$\begin{aligned} & 600 \\ & 800 \end{aligned}$	V
On-State RMS Current ($\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$) Full Cycle Sine Wave 50 to 60 Hz	$\mathrm{I}_{\mathrm{T} \text { (RMS) }}$	12	A
Peak Non-repetitive Surge Current (One Full Cycle Sine Wave, $60 \mathrm{~Hz}, \mathrm{~T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$) Preceded and followed by rated current	ITSM	100	A
Circuit Fusing Considerations ($\mathrm{t}=8.3 \mathrm{~ms}$)	$\mathrm{I}^{2} \mathrm{t}$	40	$A^{2} \mathrm{~s}$
Peak Gate Power $\left(\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C} \text {, Pulse Width }=10 \mu \mathrm{~s}\right)$	P_{GM}	20	W
Average Gate Power $\left(\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}, \mathrm{t}=8.3 \mathrm{~ms}\right)$	$\mathrm{P}_{\mathrm{G}(\mathrm{AV})}$	0.35	W
Peak Gate Current $\left(\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C} \text {, Pulse Width }=10 \mu \mathrm{~s}\right)$	I_{GM}	2.0	A
Operating Junction Temperature Range	T_{J}	-40 to +125	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +150	${ }^{\circ} \mathrm{C}$

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

1. $\mathrm{V}_{\text {DRM }}$ and $\mathrm{V}_{\text {RRM }}$ for all types can be applied on a continuous basis. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

Littelfuse.com

TRIACS
 12 AMPERES RMS
 600 thru 800 VOLTS

MT2

MT1

PIN ASSIGNMENT	
1	Main Terminal 1
2	Main Terminal 2
3	Gate
4	Main Terminal 2

ORDERING INFORMATION

Device	Package	Shipping
MAC212A8D	TO-220AB	500 Units / Box
MAC212A8DG	TO-220AB (Pb-Free)	500 Units / Box
MAC212A10	TO-220AB	500 Units / Box
MAC212A10G	TO-220AB (Pb-Free)	500 Units / Box

Preferred devices are recommended choices for future use and best overall value.

MAC212A8, MAC212A10

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance,	Junction-to-Case Junction-to-Ambient	$\mathrm{R}_{\text {өJC }}$	2.0
$\mathrm{R}_{\text {өJA }}$	62.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$	
Maximum Lead Temperature for Soldering Purposes $1 / 8^{\prime \prime}$ from Case for 10 Secs	T_{L}	260	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(T_{\mathrm{C}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted; Electricals apply in both directions)

Characteristic		Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS						
Peak Repetitive Blocking Current ($\mathrm{V}_{\mathrm{D}}=$ Rated $\mathrm{V}_{\mathrm{DRM}}, \mathrm{V}_{\mathrm{RRM}}$; Gate Open)	$\begin{array}{r} \mathrm{T}_{J}=25^{\circ} \mathrm{C} \\ \mathrm{~T}_{J}=+125^{\circ} \mathrm{C} \end{array}$	IDRM, IRRM	-	-	$\begin{aligned} & 10 \\ & 2.0 \end{aligned}$	$\begin{gathered} \mu \mathrm{A} \\ \mathrm{~mA} \end{gathered}$

ON CHARACTERISTICS

Peak On-State Voltage $\mathrm{I}_{\text {TM }}= \pm 17$ A Peak; Pulse Width $=1$ to 2 ms , Duty Cycle $\leqslant 2 \%$	$\mathrm{V}_{\text {TM }}$	-	1.3	1.75	V
Gate Trigger Current (Continuous dc) (Main Terminal Voltage $=12 \mathrm{Vdc}, \mathrm{R}_{\mathrm{L}}=100 \Omega$) MT2(+), G(+) MT2(+), G(-) MT2(-), G(-) MT2(-), G(+)	I_{GT}	-	$\begin{aligned} & 12 \\ & 12 \\ & 20 \\ & 35 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & 75 \end{aligned}$	mA
Gate Trigger Voltage (Continuous dc) (Main Terminal Voltage $=12 \mathrm{Vdc}, \mathrm{R}_{\mathrm{L}}=100 \Omega$) MT2(+), G(+) MT2(+), G(-) MT2(-), G(-) MT2(-), G(+)	V_{GT}		$\begin{aligned} & 0.9 \\ & 0.9 \\ & 1.1 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & 2.0 \\ & 2.5 \end{aligned}$	V
Gate Non-Trigger Voltage (Continuous dc) (Main Terminal Voltage $=12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{~T}_{\mathrm{J}}=+125^{\circ} \mathrm{C}$) All Four Quadrants	V_{GD}	0.2	-	-	V
Holding Current (Main Terminal Voltage $=12 \mathrm{Vdc}$, Gate Open, Initiating Current $= \pm 200 \mathrm{~mA}$)	I_{H}	-	6.0	50	mA
$\begin{aligned} & \text { Turn-On Time } \\ & \left(\mathrm{V}_{\mathrm{D}}=\text { Rated } \mathrm{V}_{\mathrm{DMM}}, \mathrm{I}_{\mathrm{TM}}=17 \mathrm{~A}, \mathrm{I}_{\mathrm{GT}}=120 \mathrm{~mA},\right. \\ & \text { Rise Time }=0.1 \mu \mathrm{~s}, \text { Pulse Width }=2 \mu \mathrm{~s}) \end{aligned}$	t_{gt}	-	1.5	-	$\mu \mathrm{S}$

DYNAMIC CHARACTERISTICS

Critical Rate of Rise of Commutation Voltage ($\mathrm{V}_{\mathrm{D}}=$ Rated $\mathrm{V}_{\mathrm{DRM}}, \mathrm{I}_{\mathrm{TM}}=17 \mathrm{~A}$, Commutating di/dt $=6.1 \mathrm{~A} / \mathrm{ms}$, Gate Unenergized, $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$)	$\mathrm{dv} / \mathrm{dt} \mathrm{c}_{\text {c }}$	-	5.0	-	V/us
Critical Rate of Rise of Off-State Voltage $\left(\mathrm{V}_{\mathrm{D}}=\right.$ Rated $\mathrm{V}_{\mathrm{DRM}}$, Exponential Voltage Rise, Gate Open, $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$)	dv/dt	-	100	-	V/us

Voltage Current Characteristic of Triacs

(Bidirectional Device)

Symbol	Parameter
$\mathrm{V}_{\text {DRM }}$	Peak Repetitive Forward Off State Voltage
$\mathrm{I}_{\text {DRM }}$	Peak Forward Blocking Current
$\mathrm{V}_{\text {RRM }}$	Peak Repetitive Reverse Off State Voltage
$\mathrm{I}_{\text {RRM }}$	Peak Reverse Blocking Current
$\mathrm{V}_{\text {TM }}$	Maximum On State Voltage
I_{H}	Holding Current

Quadrant Definitions for a Triac

All polarities are referenced to MT1.
With in-phase signals (using standard AC lines) quadrants I and III are used.

Figure 1. Current Derating

Figure 2. Power Dissipation

Figure 4. Maximum Non-Repetitive Surge Current

Figure 5. Typical Gate Trigger Voltage

MAC212A8, MAC212A10

Figure 6. Typical Gate Trigger Current

Figure 7. Typical Holding Current

Figure 8. Thermal Response

PACKAGE DIMENSIONS

TO-220AB

CASE 221A-07
ISSUE AA

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y. DIMENSIONM, 1982.
. CONTROLING DIMENSION: INCH.
2. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE AlLOWED.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	0.570	0.620	14.48	15.75
B	0.380	0.405	9.66	10.28
C	0.160	0.190	4.07	4.82
D	0.025	0.035	0.64	0.88
F	0.142	0.147	3.61	3.73
G	0.095	0.105	2.42	2.66
H	0.110	0.155	2.80	3.93
J	0.014	0.022	0.36	0.55
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
T	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
V	0.045	---	1.15	---
Z	---	0.080	---	2.04

STYLE 4:
PIN 1. MAIN TERMINAL 1
. MAIN TERMINAL 2
. GATE
MAIN TERMINAL 2

Littelfuse products are not designed for, and shall not be used for, any purpose (including, without limitation, automotive, military, aerospace, medical, life-saving, life-sustaining or nuclear facility applications, devices intended for surgical implant into the body, or any other application in which the failure or lack of desired operation of the product may result in personal injury, death, or property damage) other than those expressly set forth in applicable Littelfuse product documentation. Warranties granted by Littelfuse shall be deemed void for products used for any purpose not expressly set forth in applicable Littelfuse documentation. Littelfuse shall not be liable for any claims or damages arising out of products used in applications not expressly intended by Littelfuse as set forth in applicable Littelfuse documentation. The sale and use of Littelfuse products is subject to Littelfuse Terms and Conditions of Sale, unless otherwise agreed by Littelfuse.

