
Big Easy Driver Hookup Guide

Big Easy Driver Hook-Up Guide SparkFun Wish List

CONTRIBUTORS: TONI_K

Introduction
The Big Easy Driver gives you the capability to drive stepper motors that
pull up to 2A/phase. This driver defaults to 16 step microstepping mode,
and gives you control of motor speed and location.

Materials Required

To follow along with this tutorial, we recommend you have access to the
following materials.

Jumper Wires Premium 6" M/M - 20 AWG (10 Pack)
PRT-11709

Jumper wires are awesome. Just a little bit of stranded core wire with …

Screw Terminals 3.5mm Pitch (2-Pin)
PRT-08084

Screw Terminals with 3.5mm pitch pins. Comes in 2 or 3 positions an…

Arduino Uno - R3
DEV-11021

This is the new Arduino Uno R3. In addition to all the features of the p…

Stepper Motor - 68 oz.in (400 steps/rev)
ROB-10846

These steppers are a great way to get things moving, especially when …

You can either solder screw terminals or standard headers for attaching
things to the Big Easy Driver. The best option for you will depend on your
application.

Page 1 of 9

Suggested Reading

If you aren’t familiar with the following concepts, we recommend reviewing
them before beginning to work with the Big Easy Driver.

• Installing the Arduino IDE
• How to Power Your Project
• Battery Technologies
• How to Solder
• Working with Wire
• Motor Basics

Hardware Overview
The Big Easy Driver is designed around the Allegro A4988 motor driver.
Each pin present on the board has two connection points. The first, which
are the pins closest to the center of the board, are spaced out to fit
standard 0.1" headers. The secondary connection points are closest to the
edge of the board, and are spaced to fit 2-pin screw terminals. You can use
whichever pin connections work best for your project. Functionality between
the two sets does not change.

Pin Descriptions

Several pins of the A4988 IC are broken out on the Big Easy Driver,
allowing direct connection to a bi-polar stepper motor, as well as a
microcontroller.

Board Top Pins

• Coil A+: DMOS Full Bridge 1 Output B. Half of connection point for
bi-polar stepper motor coil A.

• Coil A-: DMOS Full Bridge 1 Output A. Other half of connection point
for bi-polar stepper motor coil A.

• Coil B+: DMOS Full Bridge 2 Output B. Half of connection point for
bi-polar stepper motor coil B.

• Coil B-: DMOS Full Bridge 2 Output A. Other half of connection point
for bi-polar stepper motor coil B.

• GND: Ground.

• M+: Power supply. 8V - 35V.

Bottom Pins

• ENABLE: Logic Input. Enables the FET functionality within the motor
driver. If set to HIGH, the FETs will be disabled, and the IC will not
drive the motor. If set to LOW, all FETs will be enabled, allowing
motor control.

• MS1: Logic Input. Microstep Select 1 has a pull-down resistance of
100 kOhms. See truth table below for HIGH/LOW functionality.

• MS2: Logic Input. Microstep Select 2 has a pull-down resistance of
50 kOhms. See truth table below for HIGH/LOW functionality.

• MS3: Logic Input. Microstep Select 3 has a pull-down resistance of
100 kOhms. See truth table below for HIGH/LOW functionality.

Page 2 of 9

Microstep Select Resolution Truth Table

MS1 MS2 MS3 Microstep Resolution Excitation Mode

L L L Full Step 2 Phase

H L L Half Step 1-2 Phase

L H L Quarter Step W1-2 Phase

H H L Eigth Step 2W1-2 Phase

H H H Sixteenth Step 4W1-2 Phase

• RST: Logic Input. When set LOW, all STEP commands are ignored
and all FET functionality is turned off. The translator is set to the
Home state as well. This must be set HIGH to enable functionality of
the motor driver.

• SLEEP: Logic Input. When set to LOW, the A4988 enters sleep
mode, and disables functionality of the FETs, internal current
regulator and charge pump. When switching this pin to HIGH to wake
up the IC, allow 1 ms of delay before sending a STEP signal. The IC
will return the motor to the starting position upon receiving a HIGH
signal on this pin.

• VCC: Logic Supply.

• GND: Ground.

• STEP: Logic Input. Any transition on this pin from LOW to HIGH will
trigger the motor to step forward one step. Direction and size of step
is controlled by DIR and MSx pin settings.

• DIR: Logic Input. This pin determines the direction of motor rotation.
Changes in state from HIGH to LOW or LOW to HIGH only take
effect on the next rising edge of the STEP command.

Solder Jumpers

There are two solder jumpers present on the board.

• APWR - This solder jumper allows the user to use VCC as a power
supply for external devices. The Big Easy Driver requires 15mA to
operate, and the voltage regulator that outputs VCC can only supply
100mA. Keep this in mind when planning to power any additional
devices off of VCC.

• 5V/3.3V - This jumper allows the user to set the configuration of VCC
between 3.3V or 5V. With the jumper open, VCC will be 5V. If the
jumper is closed, VCC is 3.3V.

Page 3 of 9

Potentiometer

The potentiometer on board is included to allow users the ability to select
the current provided to the motor. It ranges from 0mA to 2000mA (2A). This
will require you to be aware what current range your motor can handle -
check the motor’s data sheet for the current settings.

If you can’t find this information, have no fear – you can still find the proper
setting for the potentiometer. First, set it to the lowest setting of the
potentiometer. Keep in mind that the potentiometer is delicate, so be careful
to not force the potentiometer past the mechanical stops when turning it.
Once you have the motor being driven at a slow, yet steady speed, slowly
turn the potentiometer and pay attention to the motor’s behavior. You
should find a sweet spot where the motor doesn’t skip or jerk between
steps.

Hardware Hookup

Connect Motor Coil Wires

You will need to determine the wire pairs for each coil on the motor you
plan to use. The most reliable method to do this is to check the datasheet
for the motor.

Coil wire diagram from the datasheet for our 68 oz.in, NEMA -17 Stepper
Motor.

However, if you are using a 4-wire or 6-wire stepper motor, it is still possible
to determine the coil wire pairs without the datasheet.

For a 4-wire motor, take one wire and check its resistance against each of
the three remaining wires. Whichever wire shows the lowest resistance
against the first wire is the pair mate. The remaining two wires should show
similar resistance between the two of them.

For a 6-wire motor, you will need to determine which of three the wires go
together for one coil. Pick one wire, and test this against all other wires.
Two wires should show some resistance between them and the first wire
picked, while the other three will show no connection at all. Once the three
wires for one coil have been determined, find two of the three that show the
highest resistance between them. These will be your two coil wires. Repeat
for the second group of three wires.

Once you have determined the coil wire pairs, you will need to attach them
to the Big Easy Driver. The first coil pair should be plugged into Coil A+ and
Coil A-, while the second coil pair plugs into Coil B+ and Coil B-. There is
no polarity on the coils, so you don’t need to worry about plugging in a coil
backwards on the board. In our example, we are using a 4-coil motor. The
connections between the Big Easy Driver and motor are as follows.

Big Easy Driver → Motor

Page 4 of 9

• A+ → Red Wire
• A- → Green Wire
• B+ → Blue Wire
• B- → Yellow Wire

Note: Do not connect or disconnect the motor while the Big Easy
Driver is powered.

Connect a Power Supply

Once your motor is connected, you can then connect a power supply to the
Big Easy Driver. You can use any kind of power supply (desktop, wall
adapter, battery power, etc.), but verify that whatever choice you go with is
capable of providing up to 2A and falls in the range of 8V to 35V.

Connect the power supply to M+ and GND. REMEMBER to disconnect
the power before connecting/disconnecting your motor.

Connect a Microcontroller

For this example, we will be using an Arduino Uno R3. However, any
microcontroller that works at 3.3V or 5V logic and has digital I/O with PWM
capability will work for this example.

Here are the following pin connections for our example.

Uno → Big Easy Driver

• D2 → DIR
• D3 → STEP
• D4 → MS1
• D5 → MS2
• D6 → MS3
• D7 → ENABLE
• GND → GND

Final Circuit

Once everything is connected, your setup should look like this:

Arduino Code

Basic Arduino Example

Page 5 of 9

Now that you have the hardware hooked up and ready to go, it’s time to get
the code uploaded. Download the Arduino code here, or for the most up-to-
date code available, please check the GitHub repository. If you need a
reminder as to how to install an Arduino library, please check out our
tutorial here.

The first section of the sketch defines all of the pin connections between the
Arduino and the Big Easy Driver. It also sets these pins as outputs, and
puts them to the proper logic levels to begin driving the motor.

//Declare pin functions on Arduino
#define stp 2
#define dir 3
#define MS1 4
#define MS2 5
#define MS3 6
#define EN 7

//Declare variables for functions
char user_input;
int x;
int y;
int state;

void setup() {
pinMode(stp, OUTPUT);
pinMode(dir, OUTPUT);
pinMode(MS1, OUTPUT);
pinMode(MS2, OUTPUT);
pinMode(MS3, OUTPUT);
pinMode(EN, OUTPUT);
resetBEDPins(); //Set step, direction, microstep and enable

pins to default states
 Serial.begin(9600); //Open Serial connection for debugging
 Serial.println("Begin motor control");
 Serial.println();
//Print function list for user selection

 Serial.println("Enter number for control option:");
 Serial.println("1. Turn at default microstep mode.");
 Serial.println("2. Reverse direction at default microstep mo
de.");
 Serial.println("3. Turn at 1/16th microstep mode.");
 Serial.println("4. Step forward and reverse directions.");
 Serial.println();
}

One thing worth noting is that the code also initializes the serial connection
at 9600bps. This enables the user (you!) to control the motor’s functionality
and debug your circuit if needed.

The main loop of the code is pretty simple. The Arduino scans the serial
port for input from the user. When it is received, it’s compared to the four
possible functions for the motor, which are triggered from user input. If no
valid input is received, the Arduino prints an error over the serial port. After
the requested function is completed, the pins on the Big Easy Driver are
reset to the defaults.

Page 6 of 9

//Main loop
void loop() {
while(Serial.available()){

 user_input = Serial.read(); //Read user input and trigge
r appropriate function

digitalWrite(EN, LOW); //Pull enable pin low to set FET
s active and allow motor control

if (user_input =='1')
 {

StepForwardDefault();
 }

else if(user_input =='2')
 {

ReverseStepDefault();
 }

else if(user_input =='3')
 {

SmallStepMode();
 }

else if(user_input =='4')
 {

ForwardBackwardStep();
 }

else
 {
 Serial.println("Invalid option entered.");
 }

resetBEDPins();
 }
}

The first of the four functions this demo sketch enables is a basic example
to show the motor spinning in one direction. The direction pin is held LOW,
which for our sketch, we define as the ‘foreword’ direction. The sketch then
transitions the step pin HIGH, pauses, and then pulls it LOW. Remember,
the motor only steps when the step pin transitions from LOW to HIGH, thus
we have to switch the state of the pin back and forth. This is repeated 1000
times, and then the Arduino requests more user input to determine the next
motor activity.

//Default microstep mode function
void StepForwardDefault()
{
 Serial.println("Moving forward at default step mode.");
digitalWrite(dir, LOW); //Pull direction pin low to move "fo

rward"
for(x= 1; x<1000; x++) //Loop the forward stepping enough t

imes for motion to be visible
 {

digitalWrite(stp,HIGH); //Trigger one step forward
delay(1);
digitalWrite(stp,LOW); //Pull step pin low so it can be tr

iggered again
delay(1);

 }
 Serial.println("Enter new option");
 Serial.println();
}

The reverse function works exactly the same as the forward function. The
only difference is that instead of pulling the direction pin LOW, we set it
HIGH, thus switching the direction of the motor spin. One thing you can try
on either of these first two functions is modifying the motor speed by

Page 7 of 9

changing the value in delay() . It is currently set to 1 microsecond, making
each step pulse take 2 microseconds. Increasing the delay will slow down
the motor, while decreasing the delay will speed up the motor.

//Reverse default microstep mode function
void ReverseStepDefault()
{
 Serial.println("Moving in reverse at default step mode.");
digitalWrite(dir, HIGH); //Pull direction pin high to move i

n "reverse"
for(x= 1; x<1000; x++) //Loop the stepping enough times fo

r motion to be visible
 {

digitalWrite(stp,HIGH); //Trigger one step
delay(1);
digitalWrite(stp,LOW); //Pull step pin low so it can be tr

iggered again
delay(1);

 }
 Serial.println("Enter new option");
 Serial.println();
}

The third function shows off the different microstepping functionality that the
Big Easy Driver provides. To enable the motor to step in 1/16th microsteps,
we must set MS1, MS2, and MS3 HIGH. This sets the logic of the board to
1/16th microstep mode. If you want to have the motor step at a different
microstep mode, change the settings for one of the MS# pins. Check the
truth table in the Hardware Overview section, if you need a reminder of
what settings are enabled by the various pin states.

// 1/16th microstep foward mode function
void SmallStepMode()
{
 Serial.println("Stepping at 1/16th microstep mode.");
digitalWrite(dir, LOW); //Pull direction pin low to move "fo

rward"
digitalWrite(MS1, HIGH); //Pull MS1,MS2, and MS3 high to se

t logic to 1/16th microstep resolution
digitalWrite(MS2, HIGH);
digitalWrite(MS3, HIGH);
for(x= 1; x<1000; x++) //Loop the forward stepping enough t

imes for motion to be visible
 {

digitalWrite(stp,HIGH); //Trigger one step forward
delay(1);
digitalWrite(stp,LOW); //Pull step pin low so it can be tr

iggered again
delay(1);

 }
 Serial.println("Enter new option");
 Serial.println();
}

The final motor function available shows how the motor can change
direction on the fly. The function works just as the forward and reverse
functions above, but switches between states quickly. This example will
step the motor 1000 steps forward and then reverse 1000 steps. This
allows you to precisely move something with the motor in one direction, and
return to the starting position exactly. Precise position control is a great
benefit of stepper motors!

Page 8 of 9

//Forward/reverse stepping function
void ForwardBackwardStep()
{
 Serial.println("Alternate between stepping forward and rever
se.");
for(x= 1; x<5; x++) //Loop the forward stepping enough time

s for motion to be visible
 {

//Read direction pin state and change it
 state=digitalRead(dir);

if(state == HIGH)
 {

digitalWrite(dir, LOW);
 }

else if(state ==LOW)
 {

digitalWrite(dir,HIGH);
 }

for(y=1; y<1000; y++)
 {

digitalWrite(stp,HIGH); //Trigger one step
delay(1);
digitalWrite(stp,LOW); //Pull step pin low so it can be

triggered again
delay(1);

 }
 }
 Serial.println("Enter new option");
 Serial.println();
}

Additional Examples

In addition to the example here, you can also install the AccelStepper
Library. There are some additional examples with this library that may be
beneficial to you for use with your Big Easy Driver. Download this and
install the library in your Arduino libraries directory.

Resources and Going Further

Going Further
Now that you’ve successfully got your Big Easy Driver up and running, it’s
time to incorporate it into your own project!

If you have any feedback, please visit the comments or contact our
technical support team at TechSupport@sparkfun.com.

Additional Resources
Check out these additional resources for more information and other project
ideas.

• Schmalz Haus Big Easy Driver Homepage
• GitHub Repository
• A4988 Datasheet
• The Great American Tweet Race
• Autonomous Vehicle Competition
• Arduino Controlled Ouija Board

Page 9 of 9

3/9/2015https://learn.sparkfun.com/tutorials/big-easy-driver-hookup-guide

